An Unconstrained Multiphase Thresholding Approach for Image Segmentation
نویسنده
چکیده
In this paper we provide a method to find global minimizers of certain non-convex 2-phase image segmentation problems. This is achieved by formulating a convex minimization problem whose minimizers are also minimizers of the initial non-convex segmentation problem, similar to the approach proposed by Nikolova, Esedoḡlu and Chan. The key difference to the latter model is that the new model does not involve any constraint in the convex formulation that needs to be respected when minimizing the convex functional, neither explicitly nor by an artificial penalty term. This approach is related to recent results by Chambolle. Eliminating the constraint considerably simplifies the computational difficulties, and even a straightforward gradient descent scheme leads to a reliable computation of the global minimizer. Furthermore, the model is extended to multiphase segmentation along the lines of Vese and Chan. Numerical results of the model applied to the classical piecewise constant Mumford-Shah functional for two, four and eight phase segmentation are shown.
منابع مشابه
An Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کامل